特點:
10年積累的成都網站設計、網站制作經驗,可以快速應對客戶對網站的新想法和需求。提供各種問題對應的解決方案。讓選擇我們的客戶得到更好、更有力的網絡服務。我雖然不認識你,你也不認識我。但先網站設計后付款的網站建設流程,更有左云免費網站建設讓你可以放心的選擇與我們合作。
它們可以處理超大量的數據。
它們運行在便宜的PC服務器集群上。
PC集群擴充起來非常方便并且成本很低,避免了“sharding”操作的復雜性和成本。
它們擊碎了性能瓶頸。
NoSQL的支持者稱,通過NoSQL架構可以省去將Web或Java應用和數據轉換成SQL友好格式的時間,執行速度變得更快。
“SQL并非適用于所有的程序代碼,” 對于那些繁重的重復操作的數據,SQL值得花錢。但是當數據庫結構非常簡單時,SQL可能沒有太大用處。
沒有過多的操作。
雖然NoSQL的支持者也承認關系數據庫提供了無可比擬的功能集合,而且在數據完整性上也發揮絕對穩定,他們同時也表示,企業的具體需求可能沒有那么多。
Bootstrap支持
因為NoSQL項目都是開源的,因此它們缺乏供應商提供的正式支持。這一點它們與大多數開源項目一樣,不得不從社區中尋求支持。
優點:
易擴展
NoSQL數據庫種類繁多,但是一個共同的特點都是去掉關系數據庫的關系型特性。數據之間無關系,這樣就非常容易擴展。也無形之間,在架構的層面上帶來了可擴展的能力。
大數據量,高性能
NoSQL數據庫都具有非常高的讀寫性能,尤其在大數據量下,同樣表現優秀。這得益于它的無關系性,數據庫的結構簡單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應用,Cache性能不高。而NoSQL的 Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。
靈活的數據模型
NoSQL無需事先為要存儲的數據建立字段,隨時可以存儲自定義的數據格式。而在關系數據庫里,增刪字段是一件非常麻煩的事情。如果是非常大數據量的表,增加字段簡直就是一個噩夢。這點在大數據量的web2.0時代尤其明顯。
高可用
NoSQL在不太影響性能的情況,就可以方便的實現高可用的架構。比如Cassandra,HBase模型,通過復制模型也能實現高可用。
主要應用:
Apache HBase
這個大數據管理平臺建立在谷歌強大的BigTable管理引擎基礎上。作為具有開源、Java編碼、分布式多個優勢的數據庫,Hbase最初被設計應用于Hadoop平臺,而這一強大的數據管理工具,也被Facebook采用,用于管理消息平臺的龐大數據。
Apache Storm
用于處理高速、大型數據流的分布式實時計算系統。Storm為Apache Hadoop添加了可靠的實時數據處理功能,同時還增加了低延遲的儀表板、安全警報,改進了原有的操作方式,幫助企業更有效率地捕獲商業機會、發展新業務。
Apache Spark
該技術采用內存計算,從多迭代批量處理出發,允許將數據載入內存做反復查詢,此外還融合數據倉庫、流處理和圖計算等多種計算范式,Spark用Scala語言實現,構建在HDFS上,能與Hadoop很好的結合,而且運行速度比MapReduce快100倍。
Apache Hadoop
該技術迅速成為了大數據管理標準之一。當它被用來管理大型數據集時,對于復雜的分布式應用,Hadoop體現出了非常好的性能,平臺的靈活性使它可以運行在商用硬件系統,它還可以輕松地集成結構化、半結構化和甚至非結構化數據集。
Apache Drill
你有多大的數據集?其實無論你有多大的數據集,Drill都能輕松應對。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺,允許大規模數據吞吐,而且能很快得出結果。
Apache Sqoop
也許你的數據現在還被鎖定于舊系統中,Sqoop可以幫你解決這個問題。這一平臺采用并發連接,可以將數據從關系數據庫系統方便地轉移到Hadoop中,可以自定義數據類型以及元數據傳播的映射。事實上,你還可以將數據(如新的數據)導入到HDFS、Hive和Hbase中。
Apache Giraph
這是功能強大的圖形處理平臺,具有很好可擴展性和可用性。該技術已經被Facebook采用,Giraph可以運行在Hadoop環境中,可以將它直接部署到現有的Hadoop系統中。通過這種方式,你可以得到強大的分布式作圖能力,同時還能利用上現有的大數據處理引擎。
Cloudera Impala
Impala模型也可以部署在你現有的Hadoop群集上,監視所有的查詢。該技術和MapReduce一樣,具有強大的批處理能力,而且Impala對于實時的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數據平臺上的數據。
Gephi
它可以用來對信息進行關聯和量化處理,通過為數據創建功能強大的可視化效果,你可以從數據中得到不一樣的洞察力。Gephi已經支持多個圖表類型,而且可以在具有上百萬個節點的大型網絡上運行。Gephi具有活躍的用戶社區,Gephi還提供了大量的插件,可以和現有系統完美的集成到一起,它還可以對復雜的IT連接、分布式系統中各個節點、數據流等信息進行可視化分析。
MongoDB
這個堅實的平臺一直被很多組織推崇,它在大數據管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創建,現在該技術已經被廣泛的應用于大數據管理。MongoDB是一個應用開源技術開發的NoSQL數據庫,可以用于在JSON這樣的平臺上存儲和處理數據。目前,紐約時報、Craigslist以及眾多企業都采用了MongoDB,幫助他們管理大型數據集。(Couchbase服務器也作為一個參考)。
十大頂尖公司:
Amazon Web Services
Forrester將AWS稱為“云霸主”,談到云計算領域的大數據,那就不得不提到亞馬遜。該公司的Hadoop產品被稱為EMR(Elastic Map Reduce),AWS解釋這款產品采用了Hadoop技術來提供大數據管理服務,但它不是純開源Hadoop,經過修改后現在被專門用在AWS云上。
Forrester稱EMR有很好的市場前景。很多公司基于EMR為客戶提供服務,有一些公司將EMR應用于數據查詢、建模、集成和管理。而且AWS還在創新,Forrester稱未來EMR可以基于工作量的需要自動縮放調整大小。亞馬遜計劃為其產品和服務提供更強大的EMR支持,包括它的RedShift數據倉庫、新公布的Kenesis實時處理引擎以及計劃中的NoSQL數據庫和商業智能工具。不過AWS還沒有自己的Hadoop發行版。
Cloudera
Cloudera有開源Hadoop的發行版,這個發行版采用了Apache Hadoop開源項目的很多技術,不過基于這些技術的發行版也有很大的進步。Cloudera為它的Hadoop發行版開發了很多功能,包括Cloudera管理器,用于管理和監控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發行版基于開源Hadoop,但也不是純開源的產品。當Cloudera的客戶需要Hadoop不具備的某些功能時,Cloudera的工程師們就會實現這些功能,或者找一個擁有這項技術的合作伙伴。Forrester表示:“Cloudera的創新方法忠于核心Hadoop,但因為其可實現快速創新并積極滿足客戶需求,這一點使它不同于其他那些供應商。”目前,Cloudera的平臺已經擁有200多個付費客戶,一些客戶在Cloudera的技術支持下已經可以跨1000多個節點實現對PB級數據的有效管理。
Hortonworks
和Cloudera一樣,Hortonworks是一個純粹的Hadoop技術公司。與Cloudera不同的是,Hortonworks堅信開源Hadoop比任何其他供應商的Hadoop發行版都要強大。Hortonworks的目標是建立Hadoop生態圈和Hadoop用戶社區,推進開源項目的發展。Hortonworks平臺和開源Hadoop聯系緊密,公司管理人員表示這會給用戶帶來好處,因為它可以防止被供應商套牢(如果Hortonworks的客戶想要離開這個平臺,他們可以輕松轉向其他開源平臺)。這并不是說Hortonworks完全依賴開源Hadoop技術,而是因為該公司將其所有開發的成果回報給了開源社區,比如Ambari,這個工具就是由Hortonworks開發而成,用來填充集群管理項目漏洞。Hortonworks的方案已經得到了Teradata、Microsoft、Red Hat和SAP這些供應商的支持。
IBM
當企業考慮一些大的IT項目時,很多人首先會想到IBM。IBM是Hadoop項目的主要參與者之一,Forrester稱IBM已有100多個Hadoop部署,它的很多客戶都有PB級的數據。IBM在網格計算、全球數據中心和企業大數據項目實施等眾多領域有著豐富的經驗。“IBM計劃繼續整合SPSS分析、高性能計算、BI工具、數據管理和建模、應對高性能計算的工作負載管理等眾多技術。”
Intel
和AWS類似,英特爾不斷改進和優化Hadoop使其運行在自己的硬件上,具體來說,就是讓Hadoop運行在其至強芯片上,幫助用戶打破Hadoop系統的一些限制,使軟件和硬件結合的更好,英特爾的Hadoop發行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個產品,所以公司在未來還有很多改進的可能,英特爾和微軟都被認為是Hadoop市場上的潛力股。
MapR Technologies
MapR的Hadoop發行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對Hadoop用戶的調查顯示,MapR的評級最高,其發行版在架構和數據處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發行版中。例如網絡文件系統(NFS)、災難恢復以及高可用性功能。Forrester說MapR在Hadoop市場上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個真正的大企業,還需要加強伙伴關系和市場營銷。
Microsoft
微軟在開源軟件問題上一直很低調,但在大數據形勢下,它不得不考慮讓Windows也兼容Hadoop,它還積極投入到開源項目中,以更廣泛地推動Hadoop生態圈的發展。我們可以在微軟的公共云Windows Azure HDInsight產品中看到其成果。微軟的Hadoop服務基于Hortonworks的發行版,而且是為Azure量身定制的。
微軟也有一些其他的項目,包括名為Polybase的項目,讓Hadoop查詢實現了SQLServer查詢的一些功能。Forrester說:“微軟在數據庫、數據倉庫、云、OLAP、BI、電子表格(包括PowerPivot)、協作和開發工具市場上有很大優勢,而且微軟擁有龐大的用戶群,但要在Hadoop這個領域成為行業領導者還有很遠的路要走。”
Pivotal Software
EMC和Vmware部分大數據業務分拆組合產生了Pivotal。Pivotal一直努力構建一個性能優越的Hadoop發行版,為此,Pivotal在開源Hadoop的基礎上又添加了一些新的工具,包括一個名為HAWQ的SQL引擎以及一個專門解決大數據問題的Hadoop應用。Forrester稱Pivotal Hadoop平臺的優勢在于它整合了Pivotal、EMC、Vmware的眾多技術,Pivotal的真正優勢實際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個,而且大多是中小型客戶。
Teradata
對于Teradata來說,Hadoop既是一種威脅也是一種機遇。數據管理,特別是關于SQL和關系數據庫這一領域是Teradata的專長。所以像Hadoop這樣的NoSQL平臺崛起可能會威脅到Teradata。相反,Teradata接受了Hadoop,通過與Hortonworks合作,Teradata在Hadoop平臺集成了SQL技術,這使Teradata的客戶可以在Hadoop平臺上方便地使用存儲在Teradata數據倉庫中的數據。
AMPLab
通過將數據轉變為信息,我們才可以理解世界,而這也正是AMPLab所做的。AMPLab致力于機器學習、數據挖掘、數據庫、信息檢索、自然語言處理和語音識別等多個領域,努力改進對信息包括不透明數據集內信息的甄別技術。除了Spark,開源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴展性。近幾年的發展使計算機科學進入到全新的時代,而AMPLab為我們設想一個運用大數據、云計算、通信等各種資源和技術靈活解決難題的方案,以應對越來越復雜的各種難題。
NoSQL不像傳統關系型庫那樣有統一的標準,也不具有普適性。所以要根據應用和數據的存取特征來選擇適合的NoSQL。
如果以前沒有接觸過NoSQL,MongoDB是一個比較好的選擇,他支持的所以和查詢能力是所有NoSQL中最強大的,缺點是索引的成本和文檔大小限制。
如果是使用Hadoop大數據分析,數據基本上不存在修改,只是插入和查詢,并且需要配合Hadoop的MR任務,HBase會是很好的選擇。
如果要求有很強的擴展能力,高并發讀寫和維護方便,Casaandra則是不錯的選擇。
當然除了上面三個流行的NoSQL,還有很多優秀的NoSQL數據庫,而且他們都有各自擅長領域,所以需要了解你們產品自身的特點然后分析選擇哪種才是最適合的,往往在大型系統中不是單一的數據庫,而是使用多種數據庫組合。
NoSQL,指的是非關系型的數據庫。隨著互聯網web2.0網站的興起,傳統的關系數據庫在應付web2.0網站,特別是超大規模和高并發的
SNS類型的web2.0純動態網站已經顯得力不從心,暴露了很多難以克服的問題,而非關系型的數據庫則由于其本身的特點得到了非常迅速的發展。
NoSQL(NoSQL
= Not Only SQL
),意即“不僅僅是SQL”,是一項全新的數據庫革命性運動,早期就有人提出,發展至2009年趨勢越發高漲。NoSQL的擁護者們提倡運用非關系型的數
據存儲,相對于鋪天蓋地的關系型數據庫運用,這一概念無疑是一種全新的思維的注入。
從這一新興技術中選擇一款正確的NoSQL數據庫是非常具有挑戰性的。比一下網建議在選擇時考慮以下因素:
并發控制
并
發控制指的是當多個用戶同時更新運行時,用于保護數據庫完整性的各種技術。并發機制不正確可能導致臟讀、幻讀和不可重復讀等此類問題。并發控制的目的是保
證一個用戶的工作不會對另一個用戶的工作產生不合理的影響。在某些情況下,這些措施保證了當用戶和其他用戶一起操作時,所得的結果和她單獨操作時的結果是
一樣的。在另一些情況下,這表示用戶的工作按預定的方式受其他用戶的影響。
封鎖
就是事務T在對某個數據對象(例如表、記錄等)操作之前,先向系統發出請求,對其加鎖。加鎖后事務T就對該數據對象有了一定的控制,在事務T釋放它的鎖之前,其它的事務不能更新此數據對象。
封鎖是一次只允許一個用戶讀取或修改的一種機制,是實現并發控制的一個非常重要的技術。
MVCC
Multi-Version Concurrency Control多版本并發控制,維持一個數據的多個版本使讀寫操作沒有沖突。MVCC優化了數據庫并發系統,使系統在有大量并發用戶時得到最高的性能,并且可以不用關閉服務器就直接進行熱備份。
ACID
指
數據庫事務正確執行的四個基本要素的縮寫。包含:原子性(Atomicity)、一致性(Consistency)、隔離性(Isolation)、持久
性(Durability)。一個支持事務(Transaction)的數據庫系統,必需要具有這四種特性,否則在事務過程(Transaction
processing)當中無法保證數據的正確性,交易過程極可能達不到交易方的要求。
None
一些系統不提供原子性。
鏡像
數據庫鏡像是DBMS根據DBA的要求,自動把整個數據庫或其中的關鍵數據復制到另一個磁盤上,每當主數據庫更新時,DBMS會自動把更新后的數據復制過去,即DBMS自動保證鏡像數據與主數據的一致性。
鏡像分為同步和異步。
數據存儲
指的是數據的物理特性怎樣被存儲在數據庫中。
磁盤 數據被存儲在硬盤驅動器里;
GFS或谷歌文件系統是一個由谷歌開發的專有的分布式文件系統;
Hadoop是Apache軟件框架,免費許可下支持數據密集型分布式應用程序;
RAM隨機存儲器;
插件 可以添加外部插件;
Amazon S3通過Web服務接口提供存儲;
BDB:BDB
全稱是 “Berkeley DB”,它是MySQL具有事務能力的表類型,由Sleepycat
Software開發。BDB表類型提供了MySQL用戶長久期盼的功能,即事務控制能力。在任何RDBMS中,事務控制能力都是一種極其重要和寶貴的功
能。事務控制能力使得我們能夠確保一組命令確實已經全部執行成功,或者確保當任何一個命令出現錯誤時所有命令的執行結果均被退回。
實現語言
實現語言會影響數據庫的發展速度。典型的NoSQL數據庫是用低級語言如C / C + +編寫的。另一方面,那些更高層次的語言如Java,使自定義更容易。
實現語言有:C, C++, Erlang, Java, Python
特性
考慮下列哪一個特點對你的數據庫是最重要的:
持久性
可用性
一致性
分區容忍性
證書類型
下面這些許可證是一個不同的開放源碼許可的形式:
GPL:通用公共許可證
BSD:伯克利軟件分發
MPL:Mozilla公共許可證
EPL:Eclipse公共許可證
IDPL:最初的開發者的公共許可證
LGPL:較寬松通用公共許可證
存儲類型
存儲類型是NoSQL數據庫最大的不同,是決定使用哪款數據庫的一個首要指標。
關鍵字:支持get、put和刪除操作
按列存儲:相對于傳統的按行存儲,數據集成容易多了
面向文件系統:存儲像是JSON或XML這樣的結構化文件,很容易就能從面向對象軟件中獲取數據。
這次的NoSQL專欄系列將先整體介紹NoSQL,然后介紹如何把NoSQL運用到自己的項目中合適的場景中,還會適當地分析一些成功案例,希望有成功使用NoSQL經驗的朋友給我提供一些線索和信息。
NoSQL概念隨著web2.0的快速發展,非關系型、分布式數據存儲得到了快速的發展,它們不保證關系數據的ACID特性。NoSQL概念在2009年被提了出來。NoSQL最常見的解釋是“non-relational”,“Not Only SQL”也被很多人接受。(“NoSQL”一詞最早于1998年被用于一個輕量級的關系數據庫的名字。)
NoSQL被我們用得最多的當數key-value存儲,當然還有其他的文檔型的、列存儲、圖型數據庫、xml數據庫等。在NoSQL概念提出之前,這些數據庫就被用于各種系統當中,但是卻很少用于web互聯網應用。比如cdb、qdbm、bdb數據庫。
傳統關系數據庫的瓶頸
傳統的關系數據庫具有不錯的性能,高穩定型,久經歷史考驗,而且使用簡單,功能強大,同時也積累了大量的成功案例。在互聯網領域,MySQL成為了絕對靠前的王者,毫不夸張的說,MySQL為互聯網的發展做出了卓越的貢獻。
在90年代,一個網站的訪問量一般都不大,用單個數據庫完全可以輕松應付。在那個時候,更多的都是靜態網頁,動態交互類型的網站不多。
到了最近10年,網站開始快速發展。火爆的論壇、博客、sns、微博逐漸引領web領域的潮流。在初期,論壇的流量其實也不大,如果你接觸網絡比較早,你可能還記得那個時候還有文本型存儲的論壇程序,可以想象一般的論壇的流量有多大。
Memcached+MySQL
后來,隨著訪問量的上升,幾乎大部分使用MySQL架構的網站在數據庫上都開始出現了性能問題,web程序不再僅僅專注在功能上,同時也在追求性能。程序員們開始大量的使用緩存技術來緩解數據庫的壓力,優化數據庫的結構和索引。開始比較流行的是通過文件緩存來緩解數據庫壓力,但是當訪問量繼續增大的時候,多臺web機器通過文件緩存不能共享,大量的小文件緩存也帶了了比較高的IO壓力。在這個時候,Memcached就自然的成為一個非常時尚的技術產品。
Memcached作為一個獨立的分布式的緩存服務器,為多個web服務器提供了一個共享的高性能緩存服務,在Memcached服務器上,又發展了根據hash算法來進行多臺Memcached緩存服務的擴展,然后又出現了一致性hash來解決增加或減少緩存服務器導致重新hash帶來的大量緩存失效的弊端。當時,如果你去面試,你說你有Memcached經驗,肯定會加分的。
Mysql主從讀寫分離
由于數據庫的寫入壓力增加,Memcached只能緩解數據庫的讀取壓力。讀寫集中在一個數據庫上讓數據庫不堪重負,大部分網站開始使用主從復制技術來達到讀寫分離,以提高讀寫性能和讀庫的可擴展性。Mysql的master-slave模式成為這個時候的網站標配了。
分表分庫隨著web2.0的繼續高速發展,在Memcached的高速緩存,MySQL的主從復制,讀寫分離的基礎之上,這時MySQL主庫的寫壓力開始出現瓶頸,而數據量的持續猛增,由于MyISAM使用表鎖,在高并發下會出現嚴重的鎖問題,大量的高并發MySQL應用開始使用InnoDB引擎代替MyISAM。同時,開始流行使用分表分庫來緩解寫壓力和數據增長的擴展問題。這個時候,分表分庫成了一個熱門技術,是面試的熱門問題也是業界討論的熱門技術問題。也就在這個時候,MySQL推出了還不太穩定的表分區,這也給技術實力一般的公司帶來了希望。雖然MySQL推出了MySQL Cluster集群,但是由于在互聯網幾乎沒有成功案例,性能也不能滿足互聯網的要求,只是在高可靠性上提供了非常大的保證。
MySQL的擴展性瓶頸
在互聯網,大部分的MySQL都應該是IO密集型的,事實上,如果你的MySQL是個CPU密集型的話,那么很可能你的MySQL設計得有性能問題,需要優化了。大數據量高并發環境下的MySQL應用開發越來越復雜,也越來越具有技術挑戰性。分表分庫的規則把握都是需要經驗的。雖然有像淘寶這樣技術實力強大的公司開發了透明的中間件層來屏蔽開發者的復雜性,但是避免不了整個架構的復雜性。分庫分表的子庫到一定階段又面臨擴展問題。還有就是需求的變更,可能又需要一種新的分庫方式。
MySQL數據庫也經常存儲一些大文本字段,導致數據庫表非常的大,在做數據庫恢復的時候就導致非常的慢,不容易快速恢復數據庫。比如1000萬4KB大小的文本就接近40GB的大小,如果能把這些數據從MySQL省去,MySQL將變得非常的小。
關系數據庫很強大,但是它并不能很好的應付所有的應用場景。MySQL的擴展性差(需要復雜的技術來實現),大數據下IO壓力大,表結構更改困難,正是當前使用MySQL的開發人員面臨的問題。
NOSQL的優勢易擴展NoSQL數據庫種類繁多,但是一個共同的特點都是去掉關系數據庫的關系型特性。數據之間無關系,這樣就非常容易擴展。也無形之間,在架構的層面上帶來了可擴展的能力。
大數據量,高性能
NoSQL數據庫都具有非常高的讀寫性能,尤其在大數據量下,同樣表現優秀。這得益于它的無關系性,數據庫的結構簡單。一般MySQL使用Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應用,Cache性能不高。而NoSQL的Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。
靈活的數據模型
NoSQL無需事先為要存儲的數據建立字段,隨時可以存儲自定義的數據格式。而在關系數據庫里,增刪字段是一件非常麻煩的事情。如果是非常大數據量的表,增加字段簡直就是一個噩夢。這點在大數據量的web2.0時代尤其明顯。
高可用NoSQL在不太影響性能的情況,就可以方便的實現高可用的架構。比如Cassandra,HBase模型,通過復制模型也能實現高可用。
總結NoSQL數據庫的出現,彌補了關系數據(比如MySQL)在某些方面的不足,在某些方面能極大的節省開發成本和維護成本。
MySQL和NoSQL都有各自的特點和使用的應用場景,兩者的緊密結合將會給web2.0的數據庫發展帶來新的思路。
NoSQL,泛指非關系型的數據庫。NoSQL數據庫的產生就是為了解決大規模數據集合多重數據種類帶來的挑戰,尤其是大數據應用難題。
雖然關系型數據庫系統RDBMS在安裝和使用上仍然占有主要地位,但毋庸置疑,非關系型數據庫NoSQL技術已經成為今天發展最快的數據庫技術。
NoSQL詳解:如何找到對的技術
NoSQL是對數據庫系統的總稱,在某種程度上,它的性能和用途可能完全不同。NoSQL一詞最早產生于上世紀九十年代,意思是NoSQL(沒有SQL語言),后來隨著時間和技術的發展,SQL界面仍然作為處理數據的方式存在,所以NoSQL又有了新的詮釋,即NotOnlySQL(不只是SQL語言)。今天,NoSQL數據庫憑借著其非關系型、分布式、開源和橫向擴展等優勢,被認為是下一代數據庫產品。
四種主要的NoSQL數據庫和它們主要的應用場景
鍵值數據庫:當數據以鍵的形式訪問時,比如通過國際標準書號ISBN找一本書,鍵值數據庫是最理想的。在這里,ISBN是鍵,書籍的其他信息就是值。必須知道鍵才能查詢,不過值是一堆無意義的數據,讀取之后必須經過翻譯。
文檔存儲數據庫:該數據庫以文檔的形式管理和存儲數據。有點類似于鍵值數據庫,但文檔數據庫中的數據有結構。與鍵值數據庫中值是一堆無意義的數據不同,文檔數據庫中數據以文檔的結構被描述,典型的是JavaScriptObjectNotation(JSON)或XML.文檔存儲數據庫中的數據可以通過定義的任何模式進行查詢,但鍵值數據庫只能通過它的鍵進行查詢。
隨著大數據分析市場迅速擴展,哪些技術是最有需求和最有增長潛力的呢?在Forrester Research的一份最新研究報告中,評估了22種技術在整個數據生命周期中的成熟度和軌跡。這些技術都對大數據的實時、預測和綜合洞察有著巨大的貢獻。
1. 預測分析技術
這也是大數據的主要功能之一。預測分析允許公司通過分析大數據源來發現、評估、優化和部署預測模型,從而提高業務性能或降低風險。同時,大數據的預測分析也與我們的生活息息相關。淘寶會預測你每次購物可能還想買什么,愛奇藝正在預測你可能想看什么,百合網和其他約會網站甚至試圖預測你會愛上誰……
2. NoSQL數據庫
NoSQL,Not Only SQL,意思是“不僅僅是SQL”,泛指非關系型數據庫。NoSQL數據庫提供了比關系數據庫更靈活、可伸縮和更便宜的替代方案,打破了傳統數據庫市場一統江山的格局。并且,NoSQL數據庫能夠更好地處理大數據應用的需求。常見的NoSQL數據庫有HBase、Redis、MongoDB、Couchbase、LevelDB等。
3. 搜索和知識發現
支持來自于多種數據源(如文件系統、數據庫、流、api和其他平臺和應用程序)中的大型非結構化和結構化數據存儲庫中自助提取信息的工具和技術。如,數據挖掘技術和各種大數據平臺。
4. 大數據流計算引擎
能夠過濾、聚合、豐富和分析來自多個完全不同的活動數據源的數據的高吞吐量的框架,可以采用任何數據格式。現今流行的流式計算引擎有Spark Streaming和Flink。
5. 內存數據結構
通過在分布式計算機系統中動態隨機訪問內存(DRAM)、閃存或SSD上分布數據,提供低延遲的訪問和處理大量數據。
6. 分布式文件存儲
為了保證文件的可靠性和存取性能,數據通常以副本的方式存儲在多個節點上的計算機網絡。常見的分布式文件系統有GFS、HDFS、Lustre 、Ceph等。
7. 數據虛擬化
數據虛擬化是一種數據管理方法,它允許應用程序檢索和操作數據,而不需要關心有關數據的技術細節,比如數據在源文件中是何種格式,或者數據存儲的物理位置,并且可以提供單個客戶用戶視圖。
8. 數據集成
用于跨解決方案進行數據編排的工具,如Amazon Elastic MapReduce (EMR)、Apache Hive、Apache Pig、Apache Spark、MapReduce、Couchbase、Hadoop和MongoDB等。
9. 數據準備
減輕采購、成形、清理和共享各種雜亂數據集的負擔的軟件,以加速數據對分析的有用性。
10. 數據質量
使用分布式數據存儲和數據庫上的并行操作,對大型高速數據集進行數據清理和充實的產品。
文章題目:nosql哪個技術最好,nosql產品有哪些
標題來源:http://m.2m8n56k.cn/article46/phpehg.html
成都網站建設公司_創新互聯,為您提供定制網站、網站維護、企業網站制作、網站內鏈、網站設計、網站收錄
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:[email protected]。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯